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ABSTRACT
Symmetric steganographic communication requires a secret
stego-key pre-shared between the communicating parties.
Public-key steganography (PKS) overcomes this inconveni-
ence. In this case, the steganographic security is based solely
on the underlying asymmetric encryption function. This
implies that the embedding positions are either public or
hidden by clever coding, for instance using Wet Paper Codes
(WPC), but with public code parameters. We show that using
WPC with efficient encoding algorithms may leak informa-
tion which can facilitate an attack. The public parameters
allow an attacker to predict among the possible embedding
positions the ones most likely used for embedding. This
approach is independent of the embedding operation. We
demonstrate it for the case of least significant bit (LSB)
replacement and present two new variants of Weighted Stego-
Image (WS) steganalysis specifically tailored to detect PKS
using efficient WPC. Experiments show that our WS variants
can detect PKS with higher accuracy than known methods,
especially for low embedding rates. The attack is applicable
even if a hybrid stegosystem is constructed and public-key
cryptography is only used to encapsulate a secret stego-key.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision – Applications; C.2.0 [General]: Security
and Protection

General Terms
Security, Algorithms, Theory

1. INTRODUCTION
Steganography enables hidden communication between

two parties without allowing a third party to notice the hid-
den communication. To do so, a sender typically embeds
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hidden messages in a digital medium by slightly modify-
ing parts of the medium. The security of steganography
solely depends on the detectability of an embedded mes-
sage, regardless of whether an attacker is able to read the
hidden message. Many steganographic methods require a
secret stego-key, shared between the communicating parties.
Public-key steganography (PKS) is an approach to allow
hidden communication without a shared secret between the
sender and the recipient [24]. This is possible by using asym-
metric cryptography to encrypt a message before embedding.
One way to implement this requires that the positions of
the elements used for embedding are publicly known [2], by
which the security of this communication only depends on
the strength of the cryptographic system [11]. It is often
taken for granted that indistinguishability from a random
bit sequence is sufficient to achieve steganographic security.
Although this is indeed a necessary condition, an attacker
can still analyse the local neigbourhood of likely embedding
positions to obtain information about the plausibility of the
position’s value and therefore indications on whether any
embedding has taken place.

Even though public embedding positions allow commu-
nication without a shared stego-key, they give an attacker
a starting point to mount an attack by contrasting the set
of elements that might carry a hidden message and those
that do not [7, 13]. To prevent this, it is possible to extend
PKS by using Wet Paper Codes (WPC) [11, 16]. WPC let
steganographic schemes use embedding positions that are
not shared with the recipient and are therefore also unknown
to an attacker [13]. To apply WPC, both parties have to use
the same parameters for embedding and extraction. Since
in PKS the communicating parties cannot share a secret
stego-key, these code parameters must be public [11].

In this paper, we analyse how public code parameters can
be utilized to attack PKS using WPC by identifying more
likely embedding positions. We follow an early approach
presented by Böhme [4] and calculate the change probability
for every element of an object from public parameters. We
explore why these probability patterns exist and explain
theoretically how they arise. Furthermore we propose an ap-
proach that uses this information in order to extend existing
steganalysis methods for attacking PKS using WPC.

Our approach is exemplified for hidden messages that
are embedded with LSB replacement. We use the informa-
tion about likely embedding positions by extending Weighted
Stego-Image (WS) steganalysis, the state-of-the-art approach
to estimate the hidden payload length of messages embedded
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with random uniform LSB replacement. We propose two
extensions of this method to make it applicable for attack-
ing PKS using WPC. First, we use a method presented by
Schöttle et. al. [23] and sort the stego object according to its
most likely embedding positions. This allows the application
of WS steganalysis for initial sequential embedding, originally
proposed by Ker [17]. Second, we build on Weighted WS
steganalysis and assign a distinct weight to each element of
the stego object based on its embedding probability.

Our results show that the calculation of a change probab-
ility for every element allows us to identify likely embedding
positions if time-efficient encoding algorithms are used. This
works exceptionally well in the somewhat artificial situation
when a sender does not impose restrictions on possible em-
bedding positions, e.g., based on their predictability, but
considers all elements. However, even when restrictions are
applied, the approach remains possible. Both proposed ex-
tensions of WS steganalysis outperform the current detectors
for uniform random LSB replacement when applied to attack
PKS using WPC, especially for low embedding rates. We also
find that weighting the stego elements gives better results
than sorting them.

This paper is organized as follows: Section 2 presents the
notation and introduces the relevant concepts of WPC, PKS,
and WS steganalysis. Section 3 describes how probability
patterns can be generated and proposes two extensions of WS
steganalysis tailored to attack PKS using WPC. Section 4
assesses the performance of the proposed estimation of em-
bedding positions and evaluates the detection performance
of the proposed extensions. Finally, Section 5 concludes with
a summary of the results and discusses their implications.

2. RELATED WORK

2.1 Notation
Matrices and vectors are denoted by boldface symbols.

Covers are objects without any embedded messages. Using
the notation of [6], a cover is denoted by x(0) using n impli-
citly to describe its length. After embedding a message m
of length q, the resulting stego object is denoted by x(m). A
stego object with embedding rate p = q/n is denoted by x(p).
Symbol x denotes an integer value x with the LSB flipped:
x = x+ (−1)x. This notation is also applicable to vectors
and matrices, by changing the LSBs of every element. In
addition, x̂(0) is the estimated cover, calculated from the
stego object x(p), e.g., by estimating the original value of
each element by using a weighted average of the adjacent
elements. Our approach determines probability patterns
by calculating embedding probabilities pi for every element
in a cover x(0). Probability patterns are observable prob-
ability characteristics of certain elements when using fixed
parameters, in particular irregular distributed embedding
probabilities. These patterns can be used to weight the ele-
ments of a cover, denoted as ωi. A stego object sorted from
its most probable to least probable embedding position is
written as y(p). Even though the described methods are in
principle applicable to all digital media, we focus on greyscale
images for simplicity.

2.2 Wet Paper Codes
Wet Paper Codes, as first proposed by Fridrich et. al. [15],

enable steganographic schemes where a sender is able to select
possible embedding position without sharing this selection

with the recipient. Their name is a metaphor for a piece
of paper that was exposed to rain and got partially wet. A
sender is only able to hide a message in dry elements of
the paper. During transmission, the wet spots dry out, so
that the recipient cannot identify the embedding positions.
WPC allow the recipient to read the message without the
knowledge of possible embedding positions. A sender can
therefore use private selection rules to embed messages. This
is supposed to increase the security of steganographic schemes.
A detailed description of WPC can be found in [11].

WPC can be seen as a generalization of the selection
channel as introduced by Anderson [1]. They embed the
message as the syndrome of a linear code [13]. Assuming the
sender and recipient share a secret stego-key, they can use
this key to generate a shared binary matrix D with q rows
and n columns. Furthermore, a public function transforms a
cover x(0) or stego image x(m) into a binary vector b(0) or
b(m), respectively. The sender embeds the message into the
cover such that the resulting binary vector satisfies:

Db(m) = m. (1)

This matrix product is called the syndrome of b(m). To
read the message, a recipient calculates the syndrome of
b(m) using the shared matrix as well as the binary vector
of the stego image. To determine which embedding changes
are necessary in order to embed a message, a sender can
rewrite this equation to (2) by using a change vector v,
which indicates whether the corresponding element in the
cover needs to be changed in order to satisfy Equation (1).

Dv = m−Db(0) (2)

This system of linear equations consists of q equations and n
variables. The sender selects k possible embedding positions,
the ‘dry’ pixels, resulting in unknown variables. Note that
the recipient does not have to know the value of k. The
remaining n − k known variables correspond to the ‘wet’
pixels that cannot be used to embed a message. By removing
all columns from D and all elements from v that correspond
to these ‘wet’ pixels, this equation can be rewritten as

Hv = m−Db(0), (3)

where H consists of the columns of D corresponding to the
changeable pixels in the cover and v is reduced to hold the
values of all ‘dry’ pixels [13].

This system can be solved for v, for example, by using
Gaussian elimination. Assuming the maximum message
length is sent, the complexity of Gaussian elimination is
O(k3). One approach to reduce the complexity is the struc-
tured Gaussian elimination, where the cover is divided into
several subsets. The message is then successively embedded
into these subsets using Gaussian elimination. A drawback
of this approach is that the probability of successfully em-
bedding an entire message is reduced due to the increased
number of systems of linear equations, each with a non-zero
probability of being singular [13].

An elegant and efficient approach to embed a message
using WPC is the matrix LT process [14, 16]. The matrix
LT process transforms an under-determined system of linear
equations into upper triangle form by permuting its rows
and columns. It uses an iterative process, selecting a column
with Hamming-weight one in each iteration. This means a
column j with only a single value Hi,j = 1. It then permutes
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Figure 1: Block diagram of public-key steganography

the columns and rows of the system so that H1,1 = 1 and
Hi,1 = 0 for i > 1. In the next iteration the first row and
column are ignored, and the rows and columns are permuted
such that H2,2 = 1 and Hi,2 = 0 for i > 2 [8]. Given that
there will always be a column with Hamming-weight one, this
process will transform the system into upper triangle form,
which can be efficiently solved using back-substitution [16].
Algorithm 1 gives the pseudo code for the matrix LT process.
To increase the probability of a column with Hamming-
weight one in every iteration, the columns of the matrix H
can be generated so that their Hamming-weights follow the
Robust Soliton distribution (RSD)1 [20]. This is supposed
to make the system of linear equations sparsely populated
while remaining solvable. The matrix H, however, is not
directly generated, but derived from the columns of D that
correspond to the ‘dry’ pixels. Both communicating parties
therefore generate the shared Matrix D following the RSD.
The columns of matrix H then inherit the distribution of
the corresponding columns in matrix D [11].

WPC are a first approach that utilizes encoding in con-
nection with steganography. This approach has been further
developed, for example, leading to the widely used syndrome
trellis codes [10].

2.3 Public-Key Steganography
Steganography uses cryptographic keys to ensure that only

authorized parties are able to identify and read hidden mes-
sages [6]. Many steganographic methods depend on a shared
stego-key between the sender and the recipient. An approach
to overcome this restriction is public-key steganography [2].

PKS uses asymmetric encryption in order to avoid a shared
secret between the sender and the recipient [11]. To do so,
it uses pairs of public and private keys. While the sender
holds a private key d, there exists a corresponding public
key e. The public key is used to encrypt a message m, i.e.,
e(m) = m′ and the private key is able to decrypt such an
encrypted message, i.e., d(m′) = m [21].

In PKS, this principle is used to construct a steganographic
scheme [11]. Before embedding a message, a sender encrypts
the message using the public key of the recipient and embeds
the message in publicly available embedding positions [2].

1See Appendix A for an explanation of the RSD.

On receipt of a medium the recipient reads the message
along the public embedding path and decrypts it using the
corresponding private key. This enables the sender to de-
termine whether a hidden message has been embedded into
the medium [2]. Figure 1 shows a block diagram of PKS.
As long as the encryption function produces uniform i.i.d.
ciphertexts, an attacker is not able to distinguish between a
random bit-sequence and an encrypted message [21].

Even though an attacker is not able to identify an encryp-
ted message due to the apparently random ciphertexts, the
public embedding positions can be used as a starting point
to mount an attack on the communication [11]. The attacker
can search for traces that indicate the embedding of a bit
sequence. These are best exploited when the attacker has
knowledge about embedding probabilities of the medium.

Anderson and Petitcolas [2] mention a possible approach
for using PKS as key distribution scheme in order to initiate
conventional steganographic communication:

‘the value encrypted under a public key could be
a control block consisting of a session key [. . . ],
and the session key would drive a conventional
steganographic scheme.’ [2, p. 480]

This method has its roots in cryptography where it is known
as a key encapsulation scheme [9]. The idea is to use asymmet-
ric cryptography only to exchange a symmetric key, which
then enables symmetric encryption. In general, a similar
approach can be applied in steganography, allowing the ex-
change of a secret stego-key. This approach reduces the
message length sent under public parameters considerably.
It must be noted, however, that encapsulating a conven-
tional stego-key of 64–128 bits requires a much larger pay-
load because the key must be encrypted with the public key
of the recipient. In a scenario where both parties rely on
steganographic communication, we assume a reasonably se-
cure public-key cryptosystem. With the recent revelations, a
careful steganographer would be wary of elliptic curve crypto-
graphy, which promises shorter minimum message sizes, and
consider a system based on RSA with a key size of at least
2048 bits. Its ciphertext is in the order of 2048 bits, inde-
pendent of the plaintext size. Assuming that the cover image
is a greyscale image of size 128 × 128 pixels, this payload
will be p = 0.13. Even if the size of the image is increased



to 512× 512 pixels, the payload of approximately p = 0.078
lies in a range where modern detectors may catch it.

An approach to avoid attacks on PKS is to use, quoting
the authoritative textbook,

‘selection channels that are completely random
implemented using wet paper codes.’ [11, p. 184]

This would allow a sender to embed the message in secret
embedding positions so that an attacker cannot use this in-
formation. Since there is no shared secret between the sender
and the recipient in PKS, both cannot generate the matrix D
based on a shared key. To allow the use of WPC, this matrix
(or its seed) can be made public [11, p. 184]. This allows
every party to extract the encrypted message, but without
revealing the exact embedding positions. Only the owner of
the private key is able to decrypt and read the message [11].
Even though the author does not specifically propose the
matrix LT process in order to embed messages in PKS, it
is by far the most efficient approach when embedding with
WPC, and the only improvement to Gaussian elimination
that retains a sufficient probability of solving the system
of linear equations. This extension of PKS is supposed to
enable steganographic communication, now quoting original
research work,

‘without revealing any information about the
placement of the embedding changes.’ [16, p. 216]

Our contribution challenges this view.

2.4 Weighted Stego-Image Steganalysis
Weighted Stego-Image steganalysis, as presented by Frid-

rich and Goljan [12], is a quantitative steganalytic method
targeting LSB replacement. It uses a so called Weighted
Stego-Image x(p,λ), which is a weighted average between the
stego image and the stego image with every element’s LSB
flipped. Following [18] and [6], we define x(p,λ) as:

x(p,λ) = λx(p) + (1− λ)x(p), (4)

where λ describes the weighting and x(p) denotes the stego
image with every element’s LSB flipped.

Theorem 1 in [12] states that the Euclidean distance

between x(p,λ) and x(0) is minimized for λ = q/(2n). As
the cover is unknown to an attacker, she has to estimate it
from the stego image. This can be achieved by using a linear
filter, i.e., a weighted average of the local neighborhood. An
example for such a filter is presented by Ker and Böhme
using a filter of the form (5). The performance of these filters
has mainly been evaluated experimentally and needs further
research [6, 18].
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We can use twice the Euclidean distance as an estimator
for the embedding rate, using Equation (6). By differenti-
ating the Euclidean distance for λ, we can estimate p using

Equation (7) [12].

p̂ = 2 arg min
λ

n∑

i=1

(
x
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)
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Several approaches to improve this method have been made.
Most notably is Weighted WS steganalysis which adds ele-
ment weights to the stego image [12]. This second weighting
takes differences in local predictability into account. Ele-
ments which can be estimated with high confidence contrib-
ute more to the estimation than elements where errors are
expected:

p̂ = 2

n∑

i=1

wi
(
x
(p)
i − x̂

(0)
i

)(
x
(p)
i − x

(p)
i

)
, (8)

using
∑n
i=1 wi = 1 [12].

Both basic methods assume that changes in the cover are
spread uniformly [18]. Ker [17] proposes a variant tailored to
initial sequential embedding. He decomposes Equation (6)
into two parts, reflecting that embedding changes only occur
in the first elements. The first elements are therefore weighted
using λ = 1/2 while the remaining elements are weighted
with λ = 0. Note that in this scenario any change to the
weighting, e.g., based on local predictability, will degrade
the estimation. This is the case because it is certain that
the first elements contain the hidden message. The resulting
estimator (Eq. (9)) is minimized for the point where the
embedding ends, i.e., l = q [17].

E(l) =

l∑

i=1

(
1

2

(
x
(p)
i + x

(p)
i

)
− x̂(0)i

)2

+

n∑

i=l+1

(
x
(p)
i − x̂

(0)
i

)2
(9)

This approach outperforms the previously introduced de-
tectors when applied to initial sequential embedding [17].
However, it is not possible to obtain a closed form by differ-
entiating Equation (9). To overcome this, Ker proposes the
recursive function in Equation (10).

e0 = 0

el = el−1 +

(
1

2

(
x
(p)
l−1 + x

(p)
l−1

)
− x̂(0)l−1

)2

−
(
x
(p)
l−1 − x̂

(0)
l−1

)2
(10)

This is possible because Equation (10) satisfies E(l) = el +∑n
i=1(x

(p)
i − x̂

(0)
i )2. Since the last term is constant it can be

ignored to find the minimum of Equation (10).
The approach presented in [23] utilizes this method to make

WS steganalysis applicable for naive adaptive embedding,
where the sender embeds a message only in the q elements
she considers to be most secure [22]. By reordering the
stego image according to the criterion used for locating these
elements, this kind of embedding reduces to initial sequential.

There exist further specializations of WS steganalysis, for
example with bias correction [6, 18] or tailored to JPEG
covers [5]. To the best of our knowledge none of these
extensions take information about the encoding process into



account to create an improved detector. This is the starting
point for our approach which considers information that can
be derived from the encoding process of WPC.

3. CONTRIBUTION
In this section we discuss how the public parameters in

PKS can be utilized to mount an attack on PKS using WPC.
We first present a general approach on how to estimate likely
embedding positions by estimating probability patterns, fol-
lowing the early ideas presented in [4]. We further explore
why these patterns exist and present a theoretical explan-
ation on how they arise. Then we explain how to use this
information in order to attack PKS using WPC. To do so,
we extend WS steganalysis and make it applicable for WPC
with public parameters. In a first approach we build on a
method presented in [23]. In addition, we present a new
attack that enables us to utilize the embedding patterns to
attack WPC in PKS.

3.1 Estimating embedding positions
To use WPC without a shared key, the sender and recipient

are required to use the same parameters to generate the
matrix D [11]. The public matrix, however, determines
a large part of the system of linear equations that needs
to be solved in order to make the necessary embedding
changes [13]. This knowledge gives an attacker information
about the embedding process and can be used as a starting
point to mount an attack. A first approach to utilize this
information is motivated in [4] by using the public parameters
to determine probable embedding positions. To use the
metaphor of a piece of paper exposed to rain [13], an attacker
does not predict where the rain hit the paper but, which of
the ‘dry’ positions were most likely used for embedding.

To estimate the embedding positions, an attacker may
embed multiple messages using the same public parameters.
By observing the necessary embedding changes in the me-
dium, it is possible to calculate an embedding probability for
every element in the cover. This approach is enabled due to
the public matrix D as well as the information that can be
derived from its dimensions. While the number of columns
in D indicates the length n of the cover, the number of rows
corresponds to the message length q. The message and the
cover are secret and unknown to an attacker. Embedding
probabilities therefore have to be calculated using random
messages and random covers. This means an attacker can
generate random messages of length q and embed them into
random covers of length n, using the public matrix.

3.1.1 Without the Use of a Selection Rule
First we discuss the generating process of these embedding

probabilities if the sender does not use a selection rule and
thus, all elements can be used for embedding. To determine
the embedding changes, the system of linear equations (3)
must be solved. As discussed in Section 2.2, an elegant and
efficient approach to solve the system is the matrix LT pro-
cess [11,16]. Preliminary results reported in [4] indicate that
for a fixed matrix D, probability patterns can be observed
after embedding multiple messages. This means that certain
elements of the cover are more likely used for embedding
than others.

Without the use of a (random or adaptive) selection rule,
the embedding probabilities can be determined with almost
perfect accuracy. The reason for this can be seen from

looking at the pseudo code for the matrix LT process in
Algorithm 1. The algorithm is perfectly deterministic and
thus, with the same input matrix D the same output, i.e.,
the same embedding positions will be produced.

To understand why these probability patterns exist, one
has to understand the selection of pivot elements during
the solving process. The solution of the system of linear
equations indicates the necessary embedding changes in the
cover. Only elements that correspond to columns that are
used during the solving process are therefore subject to
change and might carry a hidden message bit. When using
the matrix LT process to solve the system of linear equations,
the pivot columns are selected based on their column sum.
This selection is biased towards sparsely populated columns
(lines 3–5 in Algorithm 1).

Algorithm 1: Matrix LT process to solve
Hv = z [11]

1 j = 1 and t = 0;
2 while j ≤ q & (∃j′ ≥ j,∑i>j H[i, j′] = 1) do

3 swap rows j and ij ;
4 swap z[i] and z[ij ];
5 swap columns v[j] and v[j′];
6 t = t+ 1;
7 τ [t];
8 j = j + 1;

9 if j ≤ q then
10 failure;

11 v[j] = 0 for q < j ≤ k;

// back substitution

12 while t > 0 do
13 v ← τ [t](v);
14 t = t− 1;

The consequence of this can be best understood when using
a simple example and looking at the relationship between the
embedding probabilities and the matrix D. Figure 2 shows
the embedding process of 1000 random messages of length
q = 2 in random covers of length n = 5. Figure 2(a) shows
an example of matrix D where filled rectangles denote ones
and empty rectangles zeros. The histogram in Figure 2(b)
shows the observed change probability for every element. It
becomes obvious that only the elements with index two and
four are changed in order to embed a message. This indicates
that the matrix LT process is biased towards sparsely popu-
lated columns. In this example, the fourth column is always
selected as the first pivot column because it is the first and
only column with column sum one. During the matrix LT
process, the first and fourth column are therefore swapped.
The process continues by neglecting the first column and row,
searching another column with a Hamming-weight of one.
Since this applies to all the remaining columns, the first one
is selected in order to solve the system. This is the second
column in the example. After this, the message is embedded
and no further changes are required. This example shows
that for a fixed matrix D, the selection of columns during
the matrix LT process happens in a deterministic order. As
no selection rule is used, the elements corresponding to these
columns are always used to carry a message bit. These
elements can therefore be exactly identified by an attacker.



3.1.2 With the Use of a Selection Rule
Using a selection rule reduces this effect because only

selected elements may be changed. The attacker still has
to solve the system of linear equations in (3). But now, she
has to use random selection rules and thus, the input to
Algorithm 1 changes with every simulated embedding. This
leads to different embedding positions in every iteration, as
in each iteration different elements may not be used. The
selection during the solving process seems still biased towards
sparsely populated columns, though. This enables an attacker
to express a change probability for every element.

Instead of the random selection rules suggested in [11], a
sender could also use an adaptive selection rule and thus
select embedding positions that are supposedly harder to
detect. We conjecture that if this adaptive selection rule is
publicly known, an attacker could use this knowledge to even
better estimate the most likely embedding positions.

3.1.3 Gaussian Elimination
The Gaussian elimination is not biased towards sparsely

populated columns. The process instead focusses on the
first columns of the matrix. Without using a selection rule,
most of the first columns of the matrix are used to solve
the system. Only the corresponding elements may therefore
contain the hidden message. When using a selection rule,
this pattern again diminishes. Assuming that this selection
happens randomly, the embedding probability for all used
elements is approximately the same. Since the embedding
probabilities for all elements are reduced equally, this does
not allow the generation of embedding patterns.

A third approach to embed a message using WPC is the
structured Gaussian elimination as presented in [15]. For
this approach the cover is split into subsets. In each of the
subsets a part of the message is embedded using Gaussian
elimination. As expected, each subset shows a similar pattern
as the Gaussian elimination. Since most elements hold the
same probability when using Gaussian elimination, they
hold similar probabilities when repeating the process for
several subsets. Structured Gaussian elimination uses several
elements per subset as a buffer to increase the probability
that a message can be successfully embedded. These buffer
elements hold slightly lower embedding probabilities. Since
the remaining elements have similar embedding probabilities,
this knowledge can hardly be utilized for an attack.

These results show that PKS using WPC can be attacked
when the matrix LT process is used. This is the case because
certain columns of the public matrix are selected more likely
to solve the system of linear equations. When using Gaussian
elimination, columns are uniformly selected, leading to equal
change probabilities. The following section presents an ap-
proach on how to use these patterns by extending an already
existing attack on LSB replacement to make it applicable for
PKS using WPC.

3.2 Extending Weighted Stego-Image
Steganalysis

As shown in the previous section, the proposed estimation
of embedding positions only depends on the publicly available
matrix. It is therefore independent from the used embedding
method. This enables an attacker to use the estimation in
order to extend already existing steganographic attacks on
embedding methods and make them applicable for PKS using
WPC. This section proposes an extension of WS stegana-

lysis to attack PKS using WPC when LSB replacement is
used to embed a message. Although LSB replacement is
clearly insecure and should not be used in practice, it is a
good candidate to demonstrate our attack because it is best
understood and reliable steganalysis benchmarks are readily
available.

In the following we propose two extensions of WS stegana-
lysis: The first one builds on the approach of WS stegana-
lysis for naive adaptive embedding as proposed in [23]. The
second approach uses the element weights in Weighted WS
steganalysis. We call these two WS variants Sorted WS and
Probability WS, respectively.

3.2.1 Sorting the Stego Image
The first possibility we discuss to extend WS stegana-

lysis for PKS using WPC is to sort the stego image ac-
cording to its most probable embedding positions. To de-
termine the embedding probability for each element, we
use the method presented in Section 3.1. We then sort
the elements of the stego image x(p) according to theses
probabilities in descending order to estimate the ordered
stego image ŷ(p). Assuming the attacker is able to identify
each embedding position correctly, the first p · n elements

of y(p) = (y
(1)
1 , . . . , y

(1)
p·n, y

(0)
p·n+1, . . . , y

(0)
n ) contain the hidden

message [23]. This will, again, reduce the embedding to ini-
tial sequential embedding, allowing the use of the specialized
WS steganalysis approach as proposed in [17].

For a correctly ordered image, all elements containing
a hidden message are placed at the beginning. Only the
first elements of the ordered image are therefore weighted
using λ = 1/2. Thus, we get the estimator corresponding to
Equation (9) as:

E(l) =

l∑

i=1

(
1

2

(
y
(p)
i + y

(p)
i

)
− ŷ(0)i

)2

+

n∑

i=l+1

(
y
(p)
i − ŷ

(0)
i

)2
. (11)

As described in Section 2.4, this determines the point where
embedding ends and therefore the payload length [17]. Again,
we use the recursive function (Eq. (10)) of Ker to reduce the
complexity. As we work with a sorted stego image here, we
will refer to this method as Sorted WS in the following.

As discussed in Section 3.1, it is only possible to determine
exact embedding positions when no selection rule is used.
Considering that WPC allow secret selection rules, it is likely
that a sender will use this possibility. When using such a
constraint on possible embedding positions, it is only possible
to calculate embedding probabilities. When sorting the stego
image according to these probabilities, it is therefore likely
that not all embedding positions are correctly ordered. This
leaves ‘gaps’ in the first p · n elements, i.e., elements that
do not contain a hidden message. Since WS steganalysis for
sequential embedding expects a continuous payload at the
beginning of an image, it handles these ‘gaps’ poorly and
tends to underestimate the payload length [23].

3.2.2 Weighting the Stego Image
Our second approach to make WS steganalysis applicable

for PKS using WPC is to extend Weighted WS steganalysis.
Weighted WS steganalysis introduces element weights to the
stego image in order to respect different levels of uncertainty
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Figure 2: Visualization of connection between matrix LT process and observed probability patterns

when estimating the original elements in the cover [6]. The
weighting wi describes the predictability of every element.
This weighting can be used to utilize the information about
likely embedding positions.

To estimate the embedding rate we use the same approach
as Weighted WS steganalysis. As outlined in Section 2.4,
this enables us to estimate half the embedding rate. This
estimation holds true when using a normalized weighting
for every element [12]. We can therefore use this weighting
to incorporate the embedding probabilities. In a first step
we calculate the embedding probability pi for every element
using the approach presented in Section 3.1. This allows to
replace the weighting wi of Weighted WS steganalysis with
a normalized weighting ωi, based on the change probability.
This focuses on more likely embedding positions and therefore
relevant parts of the stego image. Using this approach, the
embedding rate can be estimated by using Equation (12).
By differentiating for λ, we can develop a first estimator for
the embedding rate using Equation (13) and the normalized
weighting ωi = pi/

(∑n
i=1 pi

)
.

p̂′ = 2 arg min
λ

n∑

i=1

ωi
(
x
(p,λ)
i − x̂(0)i

)2
(12)

= 2

n∑

i=1

ωi
(
x
(p)
i − x̂

(0)
i

)(
x
(p)
i − x

(p)
i

)
, (13)

However, it has to be considered that the embedding rate is
only estimated for elements with a positive weight. Elements
with an assigned weighting of zero, i.e., elements that are
never changed during the embedding process are not con-
sidered. This leads to an over-estimation, since only elements
are considered that are likely to contain a hidden message.
To estimate the embedding rate for the entire object, one
can translate the estimation using:

p̂ =
p̂′ · |ω′|
|ω| , (14)

with ω′ = {ωi ∈ ω|ωi > 0} and ω = {ω1, . . . , ωn}. As
we replace the weights of Weighted WS with the change
probabilities, we will refer to this method as Probability WS
in the following.

A drawback of this approach is that we replace the weight-
ing based on the local predictability with our calculated
embedding probabilities. We therefore neglect the knowledge
about local predictability. To join both approaches we could
combine both weightings, assigning a higher weighting to
elements that can be predicted with high confidence and that

are likely to carry a hidden message. Although this approach
works well for messages that are embedded uniformly over all
elements, it collapses when the sender embeds the message
adaptively into elements that are harder to predict. Adapt-
ive embedding, however, is one of the main reasons to use
WPC. We therefore do not further evaluate this approach,
but focus on a single (additional) weighting based on the
change probabilities.

4. EXPERIMENTAL RESULTS
This section evaluates the performance of our proposed

methods. We first investigate how accurately we can estimate
the embedding positions. We then apply this knowledge to
attack PKS using WPC when using LSB replacement as
proposed in Section 3.2. We use the full BOSSBase [3] image
database with 10 000 grayscale images and embed random
messages of different lengths using LSB replacement2. To
accelerate the calculation of embedding patterns, we crop
the images to a size of 128 × 128 pixels. Steganalysis is
generally more difficult in smaller images due to the square
root law [19], but the relative performance differentials are
unlikely to be affected by smaller test images. Furthermore
we use the matrix LT process to solve the system of linear
equations. Matrix D is generated from a random key using
c = 0.1 and δ = 0.4 as parameters for the RSD.

4.1 Estimating Embedding Positions
We analyse how accurately embedding positions can be

estimated by calculating a change probability for every ele-
ment. To do so, we embed 1000 random messages of length
q = 500 in random covers of length n = 1500 without using
any ‘wet’ pixels and observe the embedding changes. The
results show that the change probability of exactly q ele-
ments is approximately 50% while the remaining elements
are never used to embed a message. This shows that for each
embedding process the very same elements are used to hold
a message. On average the elements are changed for every
second embedding, since in every second case an element
already holds the desired value.

WPC enable using a secret selection rule. It is therefore
likely that a sender will use such a selection rule to select
possible embedding positions. Repeating the experiment, us-
ing a selection rule which randomly selects 50% ‘wet’ pixels,
it becomes obvious that the probability patterns diminish,
but remain visible. In our example, a quarter of the elements

2Note that we exclude the image borders from embedding
and detection attempts to eliminate boundary conditions.
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Figure 3: Change probabilities for a fixed matrix D, using 50% random ‘wet’ pixels, generated by 1000 embedding iterations

are never used to embed a message. The remaining elements
hold a distinct change probability, which indicates how often
each element is used during the embedding process. Fig-
ure 3(a) shows the observed change probabilities when using
the matrix LT process and a random selection rule. The
magnification of some of the probability peaks illustrates
inconsistent change probabilities. The results show that we
cannot determine the exact embedding positions, but are
able to calculate a probability for every element to identify
more likely embedding positions in the cover. These results
show that even though WPC allow a secret selection rule, the
attacker can use the public parameters of PKS to estimate
where embedding changes are more likely to happen. This
gives him a starting point to mount an attack on PKS using
WPC.

While the matrix LT process is a very elegant and efficient
method for solving the system of linear equations, other
approaches exist, e.g., Gaussian elimination. To analyse
the probability patterns when using Gaussian elimination,
we repeat the experiments using a matrix D with equal
probability for ones and zeros and solving the system of
linear equation using Gaussian elimination. The results show
that the first elements of the cover are always used to hold the
hidden message when no selection rule is applied. Similar to
the matrix LT process, an attacker is able to exactly identify
the embedding positions. However, when using a selection
rule, all elements that are used to embed a message are
used equally likely. Figure 3(b) shows the observed change
probability when using Gaussian elimination and a selection
rule that randomly selects 50% ‘wet’ pixels. When looking
at the magnified probability peaks it shows more consistent
change probabilities across all elements. The results show
that an attacker is not able to identify more likely embedding

positions. This supports the suggestions made in Section 3.1
that these patterns arise in an effort to solve the system more
efficiently.

4.2 Estimating the Embedding Rate
This section examines the accuracy of the proposed spe-

cializations of WS steganalysis. We first assume that an
attacker has knowledge about the number of possible embed-
ding positions k by using a fixed amount of k = 50% ‘dry’
pixels. Figure 5(a) shows the mean absolute error (MAE),
|p− p̂|, of the estimated embedding rate for 10000 stego im-
ages for different embedding rates p. It has to be considered
that the payload estimation for covers depends on the public
embedding rate and therefore slightly varies depending on
the corresponding probability patterns. To evaluate the per-
formance for covers we therefore calculate the average of all
considered embedding rates as the estimation. It is visible
that weighting the stego image by embedding probabilities
clearly outperforms the current detectors for all evaluated
embedding rates. Ordering the stego image according to
these probabilities works well for small embedding rates, but
quickly loses accuracy when using larger embedding rates.
This observation is similar to the results of [23].

In practice, an attacker has no information about the num-
ber of possible embedding positions. Since this information
is crucial for the calculation of probability patterns, we need
to estimate it. We propose to estimate the embedding rate
by attacking every stego image multiple times under differ-
ent assumptions about k. In a first approach we used the
maximum estimation of all attacks. However, we found that
a better estimation can be made when using the point where
both proposed methods estimate a similar embedding rate.
Figure 4(a) shows the estimation of the embedding rate of



p = 0.1 with 50% ‘dry’ pixels under different assumptions
about k. It shows that the most accurate estimation is the
point where both approaches estimate a similar embedding
rate, even if the assumption about k is incorrect. We there-
fore exploit this observation and stick to this tactic in the
following. Figure 4(b) shows the influence of this estimation
on the performance of the detectors. It can be seen that the
reduced knowledge of the attacker has very little influence
on the detection performance and leads to similar mean ab-
solute errors. In many cases the estimation of the amount of
‘dry’ pixels even leads to slightly better results. This can be
explained by Figure 4(a), as the estimation of the embedding
rate is better where the two methods coincide, than it is for
the assumption of the real amount of ‘dry’ pixels.

Using this knowledge we can estimate the embedding rate
by finding the point where the distance between Sorted WS
and Probability WS is minimal. We denote these assump-
tions over k as k. In our experiments we attack the stego
images using the assumptions k = {10%, 20%, . . . , 100%}.
To retain solvability, we only use assumptions greater than
the actual embedding rate. The used embedding rate is
public due to the size of matrix D. Figure 5(b) shows the
MAE of the same experiment with an unknown, random
amount of ‘dry’ pixels. It can be seen that all methods still
perform well for small embedding rates, but lose accuracy
for higher embedding rates. For larger embedding rates, Sor-
ted WS benefits from using the minimal distance between
both methods as it reduces the estimation error. The good
estimation performance for smaller payloads suggests that
the attack is also applicable when a hybrid stegosystem is
constructed and PKS is only used for a key encapsulation,
as described in Section 2.3.

These results show a good estimation of the embedding
rate for our specialized methods. However, as already dis-
cussed, the payload length is public due to the size of the
public matrix. It is therefore more important to identify
stego images reliably. To evaluate the performance of such
detectors, we use a recipient operating characteristics (ROC)
curve. A ROC curve compares the false positive rate to
the detection rate for a varying threshold [6]. Figure 6(a)
and Figure 6(b) show the empirical ROC curves, again for
k = 50% and for an unknown amount of ‘dry’ pixels, re-
spectively. In both cases our specialized methods clearly
outperform the existing unspecialized methods and allow a
more reliable detection of stego images.

When comparing different estimators, it is helpful to use
a single value that expresses their steganalytic performance.
An example for such a metric is the equal error rate (EER).
It expresses the error rate for the point where the probability
for a missed detection equals the false positive rate. A smaller
value indicates a better detector. Table 1 shows the EERs for
our experiment. The result underlines the good performance
for our estimators for various embedding rates. For almost
all evaluated embedding rates our detectors lead to a better
performance. For large embedding rates, this advantage
slowly diminishes.

5. DISCUSSION AND CONCLUSION
In this paper we assume that an attacker makes use of all

knowledge available to her and thus tries to predict which
of the ‘dry’ pixels have more likely been modified during
embedding with WPC. More specifically, we develop an ap-
proach to attack PKS using WPC by determining probability

patterns that can be calculated from public parameters. We
investigate, formalise and quantify an early approach pro-
posed in [4] and observe the change probability for every
element when using fixed parameters. We are able to use
this approach to calculate embedding probabilities for every
element in a stego image based on these public parameters.
We investigate why these probability patterns arise and state
that the proposed calculation of embedding probabilities is
independent of the embedding method. We are therefore
able to use the information about more likely embedding
positions to extend known attacks on embedding methods to
make them applicable for PKS using WPC. This possibility
is illustrated by extending WS steganalysis to attack the use
of LSB replacement in PKS with WPC. More specifically,
we propose two extension of WS Steganalysis. The first ap-
proach sorts the elements of the suspect image according to
their embedding probabilities. This places likely embedding
positions at the beginning, which allows to run WS stegana-
lysis for initial sequential embedding. We further propose
to use the knowledge of embedding probabilities as element
weights in Weighted WS steganalysis.

Our results indicate that the probability patterns arise
when using the matrix LT process in an attempt to solve a
system of linear equations more efficiently than with Gaussian
elimination. Solving this system determines the necessary
embedding changes when using WPC. We show that an
attacker is able to identify the exact embedding positions
when no selection rule is used. While these patterns diminish
when using a selection rule, it is still possible to calculate an
embedding probability for each element. This is in contrast
to the assumption that the use of WPC does not reveal
any information about the placement of embedding changes.
These patterns do not occur when using other algorithms to
solve the system, e.g., when using the computationally more
complex Gaussian elimination.

We investigate our specialised WS detector on a large
dataset. The results show that both proposed methods out-
perform current unspecialized methods when using a fixed
number of possible embedding positions. Both methods show
better results in estimating the embedding rate as well as
better classification of stego objects and covers. Since the
number of possible embedding positions is typically unknown,
we further present an approach to estimate the embedding
rate without any further knowledge about the amount of
embedding positions. Our experiments show that the point
where both proposed methods estimate a similar embedding
rate is a good estimator for the actual embedding rate. We
therefore estimate the embedding rate under different as-
sumptions about the amount of ‘dry’ pixels. We then exploit
the fact that both proposed methods’ estimates converges
to each other and use the point where the distance between
the estimated embedding rates is minimal. Interestingly, this
trick gives an even more accurate estimator than if we have
the real amount of ‘dry’ pixels available as side-information.

Although the proposed approach is specifically targeted at
the use of WPC, the main weakness arises from its public
parameters and the efficient solver. It is likely that further
steganographic coding schemes are also vulnerable when used
in PKS. Future research may therefore investigate the im-
plications of the proposed attack on other steganographic
schemes as well as efficient countermeasures. We do not rule
out the possibility that a similar approach may be used to
attack the widely used syndrome trellis codes [10]. While



p Probability WS Sorted WS Unweighted WS Weighted WS

0.005 0.37 0.38 0.48 0.47
0.010 0.34 0.36 0.46 0.44
0.025 0.29 0.31 0.41 0.37
0.050 0.24 0.27 0.33 0.27
0.100 0.17 0.21 0.23 0.15
0.150 0.14 0.17 0.16 0.10
0.200 0.10 0.14 0.12 0.07

Table 1: EER of the ROC curves of 10000 covers and 10000 stego images, embedding rate p and estimated amount of ‘dry’
pixels
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LSB replacement is (hopefully) rarely used in practice, the
method is well understood and serves as a starting point.
Our work illustrates the possibility to extend known targeted
attacks to make them more accurate against PKS using
WPC. The generalization to other embedding operations and
feature-based detectors is left for future work. Other open re-
search directions are the possibility to extract the embedding
probabilities by theoretical means instead of numerical simu-
lation; to combine the estimation of embedding probabilities
with knowledge about a selection rule; and finally, to find
an approach to solve the PKS problem efficiently without
leaking compromising patterns to the steganalyst.

Closing with the metaphor of Wet Paper Codes: although
the presented method is not able to predict the rain, it can
predict the most likely hideouts in the storm. The results
show that for certain combinations of building blocks, the
prediction of these hideouts can be sufficient information to
significantly reduce the security of PKS using WPC.
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APPENDIX
A. ROBUST SOLITON DISTRIBUTION

The Robust Soliton distribution is a discrete probability
distribution introduced by Luby [20]. It is an extension of
the Ideal Soliton distribution (ISD) ρ(i). It is defined as
follows [20]:

ρ(i) =

{
1
q

i = 1
1

i(i−1)
i = 2, . . . , q

(15)

The RSD is defined as the normalized sum of the ISD and
τ(i) [11,20]:

µ(i) =
ρ(i) + τ(i)

η
(16)

τ(i) =





T
iq

i = 1, . . . bq/T c − 1
T log(T/δ)

q
i = bq/T c

0 i = bq/T c+ 1, . . . , q

(17)

with η =
∑q
i=1 (ρ(i) + τ(i)) and T = c log (q/δ)

√
q [11, 20].

Generating matrix D according to this distribution is
supposed to make the resulting system of linear equations
sparse while remaining solvable [11]. Figure 7 shows the
distribution of the RSD for parameter δ = 0.5, c = 0.1 and
q = 100. While the high probabilities for low Hamming-
weights are supposed to make the matrix sparse, the high
probability for Hamming-weight 18 is supposed to ensure
that the system remains solvable [11].
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Figure 7: Robust Soliton distribution for δ = 0.5, c = 0.1
and q = 100
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